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IntroductionIntroduction

Energy needs severely increase
• Population growth
• Economic development

Depletion of fossil resources
Environmental issues
Wastes
Security of supply

Fusion offers a solution
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The Sun: a fusion reactorThe Sun: a fusion reactor

Fusion: the Sun burns hydrogen, which is converted to Helium

p+p D+e++ν+0.42MeV
D+p 3He+γ+5.49MeV
3He+3He 4He+p+p+12.86MeV

Sun temperature: ~15 millions degree

The Sun is still composed of 90% 
of hydrogen
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Fusion / fission energyFusion / fission energy

Energy can be released 
through 2 distinct processes
• Fusion of light atoms
• Fission of heavy atoms

Yves Martin, SNS 2009, April 2009, PSI 5

Z

M
as

s 
pe

r n
uc

le
on

D

T
He

n n

U
n



Fusion reactionsFusion reactions

⎧T+p+4.03Mev
D+D ⎨

⎩3He+n+3.27MeV

D+T 4He+n+17.6MeV

D+3He 4He+p+18.3MeV

D-T reaction is the ‘easiest’:
•highest cross section at
•‘lowest’ temperature

Deuterium in water
Tritium not available in nature
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Tritium cycleTritium cycle

Tritium is obtained from Lithium

6Li+n 4He+T+4.8MeV
7Li+n 4He+T+n-2.5MeV

In summary

See next talk!
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D + Li -> 4He + 100 x 106 kWh/ kg



High temperature requiredHigh temperature required

Fusion reactions occur at high temperature (100Mº)
• Due to electrical repulsive force between two nuclei

At  high temperature gases become plasmas (ionised part. + …)
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Plasma examplesPlasma examples
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Plasma confinementPlasma confinement
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Breakeven is given by Lawson Breakeven is given by Lawson criteriumcriterium

Power ratio
• Input power
• Fusion power
• Loss power (bremsstrahlung,…)

Output power > input power 
<=>

nτ

 

> 1020 [s/m3] pour T=10keV

n = plasma density
τ

 

= confinement time

Ignition criterium
• Input power can be turned off
• Losses and reheating fully compensated by fusion reactions
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What is the confinement time ?What is the confinement time ?
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τE

τE is a measure of how fast the plasma looses its energy

Time

Temperature

1/e

The loss rate is smallest, τE  largest
if the fusion plasma is big and well insulated



Magnetic confinementMagnetic confinement

Ionised particles move freely along 
field lines

2 configurations: 
• Linear device with mirrors

Losses remain
• Closed field lines - torus

Inhomogenous field ->drifts

Circular motion: 
• Radius depends on T and B
• Frequency depends only on 

magnetic field
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The The TokamakTokamak

Tokamak – from russian
• Toroidalnaja Kamera Magnetrnaja Katuska 
• Toroidal Chamber with Magnetic Confinement

Principle
• Vacuum vessel
• Magnetic field

Size of tokamaks
• Major radius  R0 (.4 – 3m)
• Minor radius  a     (1/3 x R0 )

Toroidal field characteristics
• B(R) ~ 1/R
• 1-8T à R=R0

The plasma is not stable !
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Magnetic coils / fieldsMagnetic coils / fields

Stability obtained with addition of poloidal field, 
• Produced by plasma current

created by transformer => plasma duration is limited by flux swing
Poloidal field coils added to shape the plasma 
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Magnetic surfacesMagnetic surfaces

Analysis of plasma equilibrium (plasma pressure/magnetic forces)

=> Series of nested flux surfaces with 
• equal pressure
• embedded field lines

Existence of ‘special’ surfaces
• Field lines closed after a few turns
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Heating schemesHeating schemes

Ohmic heating
• Current flowing in the 

plasma heats

• Not enough

Neutral Beam Injection
• Collisions 
• Charge exchange

Radio Frequency Heating
• Gyro motion

Ions
Electrons

• Other resonant 
plasma frequencies
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Plasma diagnosticsPlasma diagnostics
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The TCV The TCV tokamaktokamak (CRPP, Lausanne)(CRPP, Lausanne)

Characteristics
• R=0.9m, a=0.25, B≤1.5T, Ip≤1MA, Padd ≤4.5MW 

Goals
• Analysis of influence of plasma shape on plasma characteristics
• Electron Cyclotron Heating and Current Drive (170 Mº)
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The JET The JET tokamaktokamak (EU, Oxford)(EU, Oxford)

Characteristics
• R=2.96m, a=1.25, B≤3.5T, Ip≤5MA, Padd ≤25MW 

Goals
• Analysis of high performance plasmas
• Test stand for ITER
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The ITER The ITER tokamaktokamak

1st device designed to operate above “Lawson criterium”
• Large size (larger than JET)
• => Expensive
• => International project (EU, Japan, Russia, US, China, Korea, 

India)
• Several years of negotiations (siting, …)

ITER goals (performance):
• Stationary plasma with Pfus ~ 10 x Padd (Pfus ~500MW, 400s)

ITER goals (physics):
• Plasmas with α

 

particles (heating, energy flows, instabilities,…)
• Verify scaling assumptions (confinement time, …)

ITER goals (technology):
• Materials (Test blanket modules, …)
• Supraconductivity (superconducting coils, …)
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ITERITER

Major radius 6.2 m
Minor radius 2.0 m
Plasma current 15 MA
Elongation 1.7
Plasma vol. 850.0 m3

Heating 73 MW
Mag. field 5.3 T
Fus. power 500 MW 
Plasma dur. 400 s
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ITER will be a nuclear machine:  1.5 x 1020  neutrons/s



ITER siteITER site

ITER construction started in 
Cadarache, France
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ITER organisation, funding & planningITER organisation, funding & planning

International collaboration
• 7 parties

International directorate
International funding

• 10 Billions €
• Large fraction for host
• Equal fractions for others

Planning
• 1st plasma in 2018
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ITER challengesITER challenges

Physics
• Control plasmas with α

 

particles
• Reach good confinement regimes
• Control ELM sizes (impact)

Technology
• Control
• Integration

• Materials:
• Plasma facing components
• Divertor

• Diagnostics
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Swiss contribution to ITERSwiss contribution to ITER

ECH launcher

Gyrotrons test stand

Magnetics measurement

Test of supraconductors, materials
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Broader approachBroader approach

In parallel with ITER:
• International Fusion Materials Irradiation Facility (IFMIF)
• Theory / Computer centre
• Upgrade of JT60-U (Japan)
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Next step: DEMONext step: DEMO

Studies for the step after ITER has already started:

Goal:
• 1st fusion power plant: 1GWe

Characteristics
• Different sizes: Major radius between 6 and 10m
• Different scenarios

Organisation
• Construction might start before the end of ITER!
• How many DEMOs ???
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Fusion Power stationFusion Power station
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Advantages of fusion energyAdvantages of fusion energy

High energy density
• 1g D-T: 26’000 kWh (1g coal: 0.003 kWh)

Abundant fuel, available everywhere
• D ~ 1/6500 H
• Li ~17ppm in rocks 

Environmental
• No CO2
• No high level radioactive wastes

No risk of nuclear accident

No generation of weapons material
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ConclusionsConclusions

Fusion reactions power the stars

D-T reactions is the best candidate. Usage of Li for T breeding

The tokamak is the most advanced/promising device

Power ratio close to 1 has been obtained in JET

ITER is under construction to explore plasmas with high fusion power 
and improve techniques

DEMO will be the 1st fusion power plant

Fusion is an energy source in agreement with sustainable 
development 
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