Fusion

Brennstoffkreislauf für Fusionsreaktoren und Entwicklungsarbeiten im Tritiumlabor Karlsruhe

L. Dörr,

Forschungszentrum Karlsruhe, Institute for Technical Physics, Tritium Laboratory Karlsruhe Iothar.doerr@itp.fzk.de

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Outline

- Basis of nuclear fusion
 - Outer and inner fuel cycle of fusion reactors
 - Properties of tritium
- Processes of the inner and outer deuterium/tritium fuel cycle
 - Storage of tritium
 - Plasma Exhaust Processing
 - Processing of tritiated water
 - Isotope Separation
 - Fuelling
 - Pumping
 - Tritium breeding and blanket
- Introduction into the European Tritium Laboratory Karlsruhe (TLK)
- Summary

Fusion of Hydrogen in the Sun

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Fusion of Hydrogen Isotopes in Reactors

The D-T fusion reaction is the "easiest" to access

und Universität Karlsruhe (TH)

GEMEINSCHAFT

Fusion of other Hydrogen Isotopes

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

The Inner and Outer Fuel Cycle

- Among the potential fusion reactions technically most suitable is the reaction between deuterium and tritium
 - D + T \rightarrow ⁴He (3.5 MeV) + n (14.1 MeV)
- Deuterium can be extracted from natural water (contains 0.016%)
- Tritium must be imported (very limited) or bred internally from lithium
 - Import from heavy water moderated fission reactors (CANDU type)
 - T from neutron capture by D
 - Waste product to be removed from D₂O
 - Breeding reactions in a fusion reactor
 - $n + {}^{6}Li \rightarrow T + {}^{4}He$ + 4.87 MeV
 - $n + {}^{7}Li \rightarrow T + {}^{4}He + n'$ 2.47 MeV

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Some Particular Properties of Tritium

- Tritium is the heaviest hydrogen isotope and is radioactive (pure beta emitter, today's total tritium atmosphere inventory is estimated to be about 40 kg)
 - Half life $t_{1/2}$ = 12.323 + 0.004 years
 - about 1 g tritium per year is lost at an inventory of 25 g
 - Tritium radiation is rather intense
 - Energetically almost weakest natural beta emitter E_{max} = 18.6 keV
 - ¹⁸⁷Re has $E_{max} = 2.5$ keV, however at $t_{1/2} = 5 \times 10^{10}$ years is practically stable helium-3
 - Maximum range of tritium decay electrons • Air : 6 mm tritium • Metals: < 1 µm – 1 g tritium 324 mW decay heat anti-neutrino electron Activity 9.615 Ci or 3.557 * 10¹⁴ Bq Volume 3.72 Liter (standard temperature / pressure) KIT – die Kooperation von Forschungszentrum Karlsruhe HELMHOLTZ Forschungszentrum Karlsruhe GmbH n der Helmholtz-Gemeinschaft und Universität Karlsruhe (TH)

Safe Handling of Tritium (TLK) - Barriers

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Review on Guidelines for Tritium Handling

- Large quantity tritium handling involves a high integrity primary containment system
 - Primary containment shall be all metal sealed, leak tight and "tritium compatible"
 - Wetted materials should be metallic or ceramic
 - No organic materials such as pump oils
 - Organics unavoidably employed degrade
 - Polyimide ("Vespel) is used for valve seats
 - Life time of organics depends on tritium exposure (concentration and time)
 - Degradation shall not produce corrosive gases
 - Vessels are typically built against the European Pressure Vessel Directive
 - Tritium process components heated to temperatures above 150°C shall have an outer containment (inter-space evacuated)
 - Confinement of tritium permeating through hot structural materials
 - Recovery of permeated tritium by regular evacuation

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Block Diagram of the ITER DT Fuel Cycle developed at TLK 2001

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

Hydrogen, Deuterium and Tritium in Metal Hydrides (1/2)

- Hydrogen isotopes are dissolved (α -phase) before hydride (β -phase) formation, MeH_x is formed above a certain hydrogen concentration
- Metal hydrides show very interesting physical properties
 - Superconductivity at relatively high temperatures (still cryogenic levels)
 - **Order-disorder transitions** and phase transitions, etc.
- **Reversible absorption** and desorption of hydrogen

GEMEINSCHAFT

in der Helmholtz-Gemeinschaft

KIT - die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Storage (and Supply) of T (and D) in ITER

in der Helmholtz-Gemeinschaft

- Criteria for technical applications of metal tritides
 - Low equilibrium pressure of hydrogen isotopes at room temperature
 - Metal hydride acts as a highly effective pump
 - Save storage of tritium in the gaseous phase
 - Low temperature for hydrogen equilibrium pressures around atmospheric
 - Liberation of hydrogen isotopes from the metal hydride under moderate conditions
 - Flat plateau for the α -phase (dissolution) to β -phase (metal hydride) transition
 - Hydrogen isotope pressure remains constant during release at constant temperature
- Metal hydride bed design
 - Effective heating and power dissipation to allow fast hydrogen release
 - Hydrogen release reaction is strongly endothermic
 - Thermal insulation to allow calorimetry
 - Decay heat is a measure for the tritium content of the bed

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

EMEINSCHAFT

Prototypical ITER 1:1 Metal Hydride Storage Bed at TLK

- Essential ITER requirements
 - Safe storage of tritium (ZrCo or U as hydride?)
 - Inventory measurement by calorimetry
 - Inherent limitation to 70 g tritium / bed
 - Fast tritium delivery (200 Pa*m³*s⁻¹)
 - Dissipation of about 8 kW into powder packing (V ~ 1 liter)

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Comparison of ZrCoH_x (log scale) and UH_x (linear scale) Isotherms

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

The "Ash" of Fusion Reactors

- Gases from interactions of the plasma with the first wall (carbon, beryllium, tungsten)
 - Carbon oxides (CO, CO₂)
 - Water (Q₂O with Q=H,D,T; 6 isotopically different species)
 - Hydrocarbons (CQ₄ (15 isotopically different species), C_xQ_y with x < 8)
- Helium and other gases need to be continuously removed
 - Plasma confinement strongly dependent upon "impurity" content

A closed deuterium tritium fuel cycle is necessary

The Three Steps for Processing of Tritium Containing Gases

ITP-TLK

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

PERMCAT (Permeator/Catalyst) Principle

Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

GEMEINSCHAFT

CECE Process for Processing of Tritiated Water (WDS)

und Universität Karlsruhe (TH)

CECE Process (Combined Electrolysis Catalytic Exchange)

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

LPCE Column

Catalyst

- Isotopic exchange between gaseous phases
- Hydrophobic / large (inner) surface
- PTFE (Teflon) / charcoal / platinum

$$(gas) + H_2O((vapor) \rightarrow H_2(gas) + H_1O((vapor))$$

 $HTO (vapor) + H_2O (liquid) \rightarrow HTO (liquid) + H_2O (vapor)$

Packing

н

- Different boiling points of HTO and H₂O (distillation)
- Large surface
- Structured metal grids

in der Helmholtz-Gemeinschaft

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

Separation by Multi Stage Distillation

- Mixtures of liquids with different volatility can be separated by distillation
 - Distillate is enriched in the more volatile component
 - Residue is depleted in the more volatile component
 - Composition of the distillate and residue obviously changes with time
- Process can be made continuous in a multi stage arrangement
 - Feed at a certain stage
 - Withdrawal of distillate and residue
- Counter current vapor-liquid contacting column instead of multiple boilers

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Cryogenic Separation of Hydrogen Isotopomers

• Six molecular hydrogen isotopomers with different boiling points

Isotopomer	H ₂	HD	ΗТ	D ₂	DT	T ₂
Boiling Point	20.7	22.1	23.5	23.8	25.0	25.5
[K]						

- Hydrogen isotopomer separation requires distillation at cryogenic temperatures
- Separation between HT and D₂ is particularly difficult
- Side streams must be withdrawn, heated, equilibrated on a catalyst to split the heterogeneous isotopomers and returned into the column

$$2 \text{ HD} \leftrightarrow \text{H}_2 + \text{D}_2$$
$$2 \text{ HT} \leftrightarrow \text{H}_2 + \text{T}_2$$
$$2 \text{ DT} \leftrightarrow \text{D}_2 + \text{T}_2$$

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Isotope Separation (ISS)

 ITER cryogenic Isotope Separation System (ISS) comprises 4 interlinked columns (2001)

Two feed streams

- About 8 m³h⁻¹ of tritiated hydrogen and deuterium from the Water Detritiation System (WDS) mixed with tritiated deuterium from Neutral Beam injection and fed into column (1)
- Deuterium Tritium design feed flow rate into column (4) from Tokamak Exhaust Processing (TEP) system is about 7 m³h⁻¹

Four product streams

- Tritium (90% purity) or alternatively DT (50%)
- Deuterium contaminated with tritium (refueling)
- Deuterium at high purity (Neutral Beam injection)
- Hydrogen (protium) for rejection
 - This would be the largest source for tritium releases into the environment

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

Combination of Water Detritiation and Cryogenic Destillation

→H, To Stack

 H_2 , (HD, HT)

H₂, HD, HT

Permeator

Electrolyzer

H,, HD, HT,

H,0

HTO: 1 mCi/kg - 10 Ci/kg

- ITER Isotope Separation System (ISS) based on cryogenic distillation of hydrogen isotopomers
- ISS protium stream (1% deuterium) contains traces of tritium and returned to Water Detritiation System (WDS)
- Cryogenic Distillation Column 1 Column 1 Column 1 Column 1 Column 1 Column 1 Column 1
- Ef ~10³-10⁴
 ISS protium flow rate is only about 10% of the LPCE hydrogen flow rate
 - No liquid effluents from WDS

Water Detritiation employed for detritiation

Isotope Separation employed for tritium recovery

Fresh water supply

Tritiated water feed

Purifier

Liquid Phase Catalytic Exchange

Column

Fuelling System

- General duty: Injection of fuel gases (H2, D2, DT T2) for the fusion reaction and to control the plasma.
- Fuelling requirements
 - Short pulses (450 s) and long pulses (3000 s)
 - Fuelling rates in the order of 120 Pam³s⁻¹ DT 200 Pam³s⁻¹ DT for ITER

ITER and its main vacuum systems

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

Major plasma radius 6.2 m Plasma Current: 15 MA Typical Temperature: 20 keV Plasma Volume: 840 m³ Typical Density: 10²⁰ m⁻³ Fusion Power: 500 MW

Cryo-mech cross-over pressure is 10 Pa

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

ITER large cryopump systems

	Torus	Heating (NBI)	Cryostat
# Pumps	8	2 (3) +1	2
Pumping mode	Dynamic = maintain the pressure (1- 10 Pa) inside the vacuum vessel volume (1350 m ³) at a total gas throughput of (120 Pa·m ³ /s (fuelling rate) or 60 Pa·m ³ /s (He case))+ (33 Pa·m ³ /s (impurities)); Base pressure for hydrogens: 10 ⁻⁵ Pa.	Dynamic = maintain the pressure (0.01 Pa) inside the NBI volume (150 m ³ /H-NBI) at a throughput of 36 Pa·m ³ /s/H-NBI (protium operation)	Transient pump- down (closed cryostat volume of 8400 m ³) to 10 ⁻⁴ Pa and steady-state pumping of magnet coolant leak helium and outgassing gas
Gases	Hydrogen (all six isotopomers), helium, impurities Depending strongly on the operation mode (burn& dwell, conditioning, leak detection)	Hydrogen (H ₂ , D ₂)	Nitrogen, outgassing and leaking gas

Cryosorption to Pump H₂ and He @ 4.2 K

- Pumping of the gas via physisorption at the cold cryosorbent. The pumping effect is given by the porosity of the material (pore size distribution rather than BET surface).
- Activated charcoal is the method of choice.
- In the ITER design, micro porous granular activated coconut charcoal is bonded to the cooled cryopanels by means of a glue (inorganic cement, tritium compatible).
- Additional design parameter: Not only pressure and temperature, but also the gas load → saturation effects.

All three ITER cryopump systems are tailor-made and share the common approach of charcoal-coated modular cryosorption panels.

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

ITER 1.1 Scale Prototype Torus Pump

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

General Issues on Tritium Breeding in ITER

То

Tritium Plant

- ITER will not have a full breeding blanket but only Test Blanket Modules (TBM) installed on port plugs (T production 25 mg/d (module))
 - -TBMs are based on lithium ceramics or lithium alloys
 - n + ⁶Li \rightarrow T + ⁴He + 4.87 MeV
 - n + ⁷Li \rightarrow T + ⁴He + n 2.47 MeV
 - -Currently 42 different TBMs are foreseen
- Each TBM will have a Tritium Extraction System (TES)
 - -Purging of the breeder module with e.g. helium
 - Hydrogen (protium) is added (0.1%) to helium to support tritium release as HT by isotopic exchange (swamping)
 - The tritium content in HT is estimated to be only 0.1%
 - Tritium can also be released as tritiated water
 - Tritium content in helium will be only about 1 ppm
 - -The almost only way to remove HT (together with H_2) from the helium purge gas stream is by trapping (in the widest meaning of the word)

Molecular sieve beds at room and/or cryogenic temperatures

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

TLK – First Concept for TES in HCPB

Albrecht, FZK-TLK (1997)

- **TBM:** Test Blanket Module
- **TBZ:** Tritium Breeding Zone
- CZ: Cooling Zone
- **TP:** Tritium Plant
- HCS: Helium Cooling System
- **CPS:** Coolant Purification System
- **TES:** Tritium Extraction System
- CT: Cold Trap

CMSB: Cryogenic Molecular Sieve Bed

dotted line = intermittent stream

continuous line = continuous stream red = tritiated stream

ITER (2001): He 12 m³/h + 0.1% H₂

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

TLK – R&D on CT & CMSB

⇒ Demonstrated at the 1:6 scale of ITER flow rate

CMSB: 20 kg of Zeolite 5A - Adsorption isotherms

- Isotopic effect
- Breakthrough curves

CT: from FZ Jülich

- 22 copper plates with temperature profile
- Low velocity to avoid turbulences

Fig. 4. Molecular sieve adsorber.

32 Seminar PSI 22 April 2009

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

ITER Test Blanket

Tritium production in DEMO about 550 g/d (machine)

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

TLK Fields of Research

- Foundation task of the TLK at Forschungszentrum Karlsruhe in 1983, programme fusion
 - Development of the technologies for the fuel cycle of fusion reactors
 - ightarrow Processing technologies for deuterium, tritium and relevant compounds
 - \rightarrow Conduct technical and laboratory experiments with realistic concentrations of T_2
- Additional R&D activity, programme "Structure of Matter" since 2001
 - TLK hosts the international Karlsruhe Tritium Neutrino experiment (KATRIN) to measure the neutrino mass
 - → Precise spectroscopic measurement of the electron spectrum from tritium ß-decay close the endpoint at 18.6 keV
 - \rightarrow Improving the sensitivity of electron neutrino mass measurement from its current value of 2.0 eVc⁻² by one order of magnitude to 0.2 eVc⁻².

Key Data of TLK

- The TLK is an almost unique, semi-technical facility
 - Long experience in handling tritium
 - Licensed for handling up to 10 g tritium in April 1993
 - First delivery of 3.5 g tritium in October 1993
 - Commissioned with tritium in 1994
 - Licensed for handling up to 40 g tritium in February 1996 (new license since September 2007, includes operation of KATRIN)
 - Currently 24 g of tritium on site
 - Operates more than 10 glove box systems (total volume of about 125 m³) on an area of 841 m² for experiments and 615 m² for infrastructure
 - Operates a closed tritium loop

Confinement Concept at TLK

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Primary and Secondary Confinement

Primary System
 Single leak rate

≤ 10⁻¹⁰ Pam³s⁻¹

- Secondary System
 - Leak rate (glove box)

≤ 0.1 Vol%h⁻¹

Central Tritium Retention

- Tritium from primary systems (potentially higher tritium concentration) collected in vessels and pre-treated
- Tritium from secondary systems (low tritium concentration) cleaned in once-through
- Tritium burned to water and water collected in molecular sieve beds (molecular sieve beds need to be regenerated)
- Catalyst: CuO, Pd

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

TLK: Experimental Hall

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Closed Tritium Cycle at TLK

Existing closed tritium cycle at TLK:

- Tritium storage (10 metal getter beds)
- Plasma exhaust processing (CAPER, detritiation factor 10⁶ in T-concentration)
- Isotope separation (enrichment up to >99% tritium purity)
- Analytics (e.g. 3 Calorimeters, 3 GCs, 2 Quadrupoles, Omegatron, IR-spectrometer)

TLK – Closed Tritium Loop & DT Fuel Cycle

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

TLK – TRENTA for WDS / ISS in ITER (1)

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

TLK - Experimental Facility TRENTA at (2)

TRENTA: Water Detritiation and Cryo-Distillation

8 m long LPCE Column

2x Electrolyser each 1 m³/h

CECE-Prozess

Cryogenic (hydrogen) Distillation Column with 2,7 m separation length

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Work at TLK: ITER Planning WDS-ISS

- Procurement Packages of Water Detritiation System (WDS) and Isotope Separation System (ISS) for ITER given to EU
- TLK capable to process tritium in a technical scale and in closed loop as foreseen for ITER
- TLK is setting up a WDS/ISS (TRENTA) to demonstrate feasibility and to determine optimum process parameters
- Design specifications and proposals in progress

Final design proposal for both ITER WDS and ISS

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) HELMHOLTZ

STS = Source & Transport System

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Summary

• The Fuel Cycle for ITER is well prepared

• The European Tritium Laboratory Karlsruhe has contributed very much to the development of the fuel cycle of a fusion reactor

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

